

Innovation ... Delivered.

NC Quality Characterization Improvement and Its Impact on Single Base Propellant Manufacturing and Performance

Zachary Higginbotham

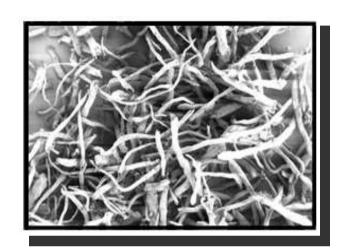
14 October 2010

Acknowledgments

A premier aerospace and defense company

Thanks are due to the following individuals for their tireless support on this project.

- Joe Palk (co-author) RDECOM-ARDEC Engineering
- Randy Brown (co-author) NC Process Engineering, ATK Energetic Systems
- Roger Hollins (co-author) Solvent Gun Propellant Process Engineer, ATK Energetic Systems
- Bishara Elmasri and Kwok Cheung RFAAP Modernization Managers, PM Joint Services
- Bruce Banyai NC Process Engineering, ATK Energetic Systems
- Teresa Sollowin NC Process Engineering, ATK Energetic Systems
- Brian Sowers NC Operations Manager, ATK Energetic Systems
- Peter Kopp Bowas Induplan Chemie GmbH
- Herbert Reitzer Mechatronik GmbH


Nitrocellulose (NC): Past to Present

A premier aerospace and defense company

Discovered in the mid-1800's

- First synthesized by Schönbein, highly unstable
- Abel perfected the purification process allowing "safe" manufacture
 - First Application: Black powder replacement
 - Celluloid photographic film, table tennis balls, knife handles, fountain pens

Current Applications

- All extruded gun and small rocket propellant products across entire DoD
 - Flake and spherical powders in small caliber
 - Granular propellant in medium and large caliber (direct and indirect fire)
 - Extruded rocket motors (MK-90 Hydra 70mm, M7-TOW/SMAW, Javelin)

RFAAP is the Sole NC Manufacturing Plant in North America

Nitrocellulose Modernization Program

A premier aerospace and defense company

US Army Funded "Process Improvement" Project

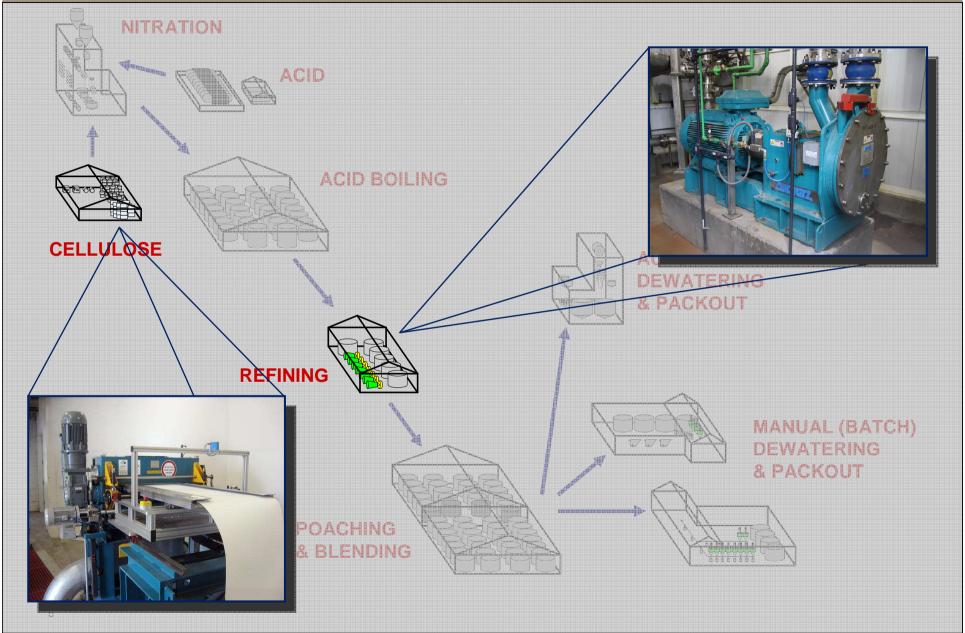
- Installation of new cellulose cutting technology
- Installation of full scale deflaking process
 - Building on success of ATK pilot scale process

Full Scale Deflaking Process

- Consists of two conditioning tanks, feed control system, and two Deflakers in series
- Additional process step remains labor cost neutral through process automation
- Innovative recirculation loop that provides:
 - More mechanical work than traditional "feed tank" circulation with less processing time
 - Easily tailorable for a variety of customer requirements

Cellulose Sheet Cutter

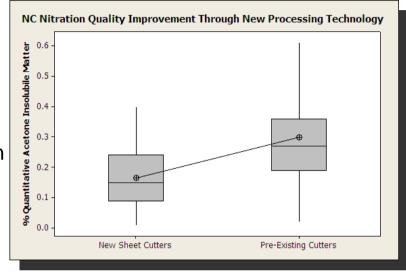
Deflaker

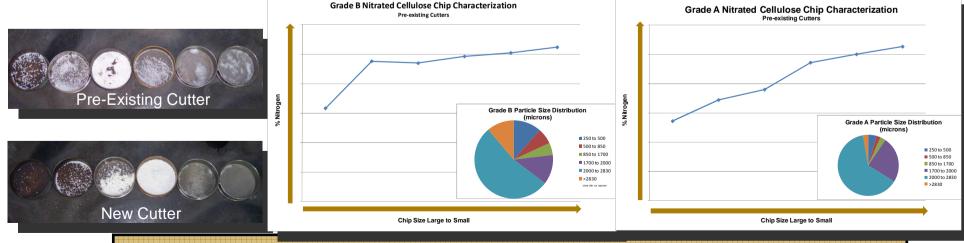


Successful Integration of Modernized Process within Existing Infrastructure

NC Manufacturing Process Flow at RFAAP

A premier aerospace and defense company


NC Improvement Program Justified with Data

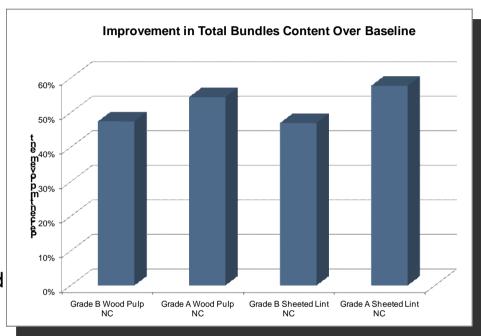


A premier aerospace and defense company

NC Process Improvement Program – Nitration Quality

- New cellulose sheet cutters provide
 - More uniform chip size
 - Improved Chip Dimensional Control
- Improved cellulose dimension consistency at nitration improves nitration distribution
 - 45% Reduction in Acetone Insoluble Matter
 - 43% Reduction in Acetone Insoluble Variability

NC Improvement Program Justified with Data



A premier aerospace and defense company

NC Process Improvement Program – Fiber Quality

- Deflaker commissioning completed July 2009
- Select propellants qualified
- Full scale Deflaker Process bundles characterization validates:
 - Significant bundles reduction
 - Improved NC Fiber Quality
 - Improved propellant processing and performance
 - > Reduction in propellant variability

M14 Propellant Processing Improved

A premier aerospace and defense company

Improved NC Results in Improved Single Base Propellant Processing on 1st Production Lot!

- Improvements in Direct Fire Propellant Processing Results
 - 40% Reduction in NC Alcohol Variation at Dehydration
 - Improved propellant mixing/consolidation.
 - No secondary solvent adds required to control dough consistency and press pressure
 - Improvement in granulation process yields to >99%
 - 60% Reduction in Scrap/Waste
 - Improved Solvent Recovery in Propellant Finishing Process
 - 33% reduction in final propellant residual solvent content
 - Improved safety inside M1 Abrams Tank solvent fire risk

Single Base Propellant Processing Improvements with Modern NC Processing Technology

M14 Propellant Performance Improved

A premier aerospace and defense company

Improved NC Results in Improved Single Base Propellant Performance on 1st Production Lot!

- Improved Direct Fire Propellant Ballistics
 - Improved grain-to-grain uniformity
 - ➤ 14% improvement in grain OD variation
 - More ballistically efficient propellant
 - Lower charge weight to maintain velocity with no impact on pressure
 - Improved charge weight performance
 - Improvement adds margin, minimizing loadability and supply continuity risk

Improved Ballistic Performance Minimizes Supply Risk

A premier aerospace and defense company

- Successful integration of modern processing technologies within the existing NC manufacturing process
 - Joint effort between PM-Joint Services, ATK, and Bowas-Induplan Chemie GmbH
- New process technologies provide improved NC quality
 - Improvements in NC quality characterized
 - NC Quality effects on M14 single base propellant manufacture quantified
 - Propellant Processing Improvements
 - Propellant Ballistic Improvements
- New NC process equipment qualified and in production

Continuous Improvements In Manufacturing Technologies
Delivering Improved Performance to the Warfighter